The effect of walking speed on muscle function and mechanical energetics.

نویسندگان

  • Richard R Neptune
  • Kotaro Sasaki
  • Steven A Kautz
چکیده

Modulating speed over a large range is important in walking, yet understanding how the neuromotor patterns adapt to the changing energetic demands of different speeds is not well understood. The purpose of this study was to identify functional and energetic adaptations in individual muscles in response to walking at faster steady-state speeds using muscle-actuated forward dynamics simulations. The simulation data were invariant with speed as to whether muscles contributed to trunk support, forward propulsion or leg swing. Trunk support (vertical acceleration) was provided primarily by the hip and knee extensors in early stance and the plantar flexors in late stance, while trunk propulsion (horizontal acceleration) was provided primarily by the soleus and rectus femoris in late stance, and these muscle contributions all systematically increased with speed. The results also highlighted the importance of initiating and controlling leg swing as there was a dramatic increase at the higher walking speeds in iliopsoas muscle work to accelerate the leg in pre- and early swing, and an increase in the biarticular hamstring muscle work to decelerate the leg in late swing. In addition, walking near self-selected speeds (1.2m/s) improves the utilization of elastic energy storage and recovery in the uniarticular ankle plantar flexors and reduces negative fiber work, when compared to faster or slower speeds. These results provide important insight into the neuromotor mechanisms underlying speed regulation in walking and provide the foundation on which to investigate the influence of walking speed on various neuromotor measures of interest in pathological populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of group resistance exercise with exciting music on spasticity, muscle strength and walking for children with cerebral palsy

Introduction: There is a strong correlation between muscle weakness and the mobility children with cerebral palsy. For this reason, the focus of the intervention programs has been changed to to resistance exercises. The purpose of this study was effect of group resistance exercise with exciting music on spasticity, muscle strength and walking ability for children with cerebral palsy. Methods: T...

متن کامل

Mechanics and energetics of human locomotion on sand.

Moving about in nature often involves walking or running on a soft yielding substratum such as sand, which has a profound effect on the mechanics and energetics of locomotion. Force platform and cinematographic analyses were used to determine the mechanical work performed by human subjects during walking and running on sand and on a hard surface. Oxygen consumption was used to determine the ene...

متن کامل

The Effect of Lower Limb Resistance Exercise with Elastic Band on Balance, Walking Speed, and Muscle Strength in Elderly Women

Introduction: The aim of this study was to investigate the effect of an 8-week resistance exercise program on balance, walking speed, and muscle strength in elderly women.   Methods: This randomized controlled trial was performed on 50 elderly women aged 60-66 years who were assigned to two groups of experimental and control. The Time Up and Go test, was used to measure dynamic balance, Rombe...

متن کامل

Mechanical efficiency of limb swing during walking and running in guinea fowl (Numida meleagris).

Understanding the mechanical determinants of the energy cost of limb swing is crucial for refining our models of locomotor energetics, as well as improving treatments for those suffering from impaired limb-swing mechanics. In this study, we use guinea fowl (Numida meleagris) as a model to explore whether mechanical work at the joints explains limb-swing energy use by combining inverse dynamic m...

متن کامل

Differences in muscle function during walking and running at the same speed.

Individual muscle contributions to body segment mechanical energetics and the functional tasks of body support and forward propulsion in walking and running at the same speed were quantified using forward dynamical simulations to elucidate differences in muscle function between the two different gait modes. Simulations that emulated experimentally measured kinesiological data of young adults wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gait & posture

دوره 28 1  شماره 

صفحات  -

تاریخ انتشار 2008